## Stereoselective Total Synthesis of Multiplolide A and of a Diastereoisomer

by Bandi Chennakesava Reddy, Vikas Madhukar Bangade, Palakuri Ramesh, and Harshadas Mitaram Meshram\*

Discovery Laboratory, Organic Chemistry Division – I, Indian Institute of Chemical Technology, Hyderabad – 500 007, India (fax: +91-40-27160512; e-mail: hmmeshram@yahoo.com)

A stereoselective total synthesis of multiplolide A (1) and of its diastereoisomer 2 was described from easily accessible starting materials (*Schemes* 2-4). The synthetic strategy involves a *Jacobsen* resolution, *Sharpless* epoxidation, *Swern* oxidation, *Yamaguchi* reaction, and ring-closing metathesis (RCM).

**Introduction.** – Natural products are a versatile source for therapeutic agents. Among them, lactone containing molecules are often shown to possess a wide spectrum of biological activity [1]. Particularly, ten-membered lactones, formerly called decanolides, are abundant in nature and display a wide range of biological properties such as, antifungal and antibacterial achivity and the inhibition of cholesterol biosynthesis [2].

Multiplolides A (1) and B are ten-membered lactones, which have been isolated from the culture broth of *Xylaria multiplex* in 2001 [3]. They exhibit antifungal activity against *Candida albicans* with an  $IC_{50}$  value of 7 and 2 µg/ml, respectively. *Ramana* and co-workers reported the first total synthesis [4] and absolute configuration of multiplolide A. Their synthetic strategy was based on the use of chiral starting material and ring-closing methathesis (RCM). Recently, we have initiated a research programme for the total synthesis of bioactive natural products from achiral sources [5]. Our approach to the total synthesis of multiplolide A (1) and its diastereoisomer **2** involves the use of commercially available 2-methyloxirane and (2*Z*)-but-2-ene-1,4diol as starting materials.

**Results and Discussions.** – The retrosynthetic analysis of lactones 1 and 2 is shown in *Scheme 1*. The cleavage of the lactone leads to the oxiranecarboxylic acids 3 and 4 and (protected) olefinic alcohol 5, which in turn could be obtained from (2Z)-but-2ene-1,4-diol (6) and (2R)-2-methyloxirane (8) via 7, respectively (*Scheme 1*).

The synthesis of fragment **5** began with the kinetic resolution of 2-methyloxirane with (R,R)-Jacobsen catalyst (**A**) [6]. The chiral oxirane **8** was then opened with ethyl prop-2-ynoate (**9**) in the presence of BuLi at  $-78^{\circ}$  to give hydroxyalkynoate **10** in 81% yield [7] (*Scheme 2*). The selective reduction of the alkyne and ester moiety of **10** with LiAlH<sub>4</sub> furnished allylic alcohol **11** in 78% yield [8]. The primary-alcohol moiety of **11** was protected by treatment with pivaloyl chloride (81% yield), then the secondary-alcohol moiety was protected as 'BuPh<sub>2</sub>Si ether (91% yield), and finally the pivaloyl

<sup>© 2013</sup> Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Retrosynthetic Analysis of Multiplolide A (1) and of Its Diastereoisomer 2



group was deprotected with  $K_2CO_3$  in MeOH leading to the 'BuPh<sub>2</sub>Si-protected allylic alcohol **12** in 88% yield. The latter was transformed into oxirane alcohol **7** via Sharpless epoxidation [9]. Conversion of oxirane alcohol **7** into **13** was accomplished in good yield by Swern oxidation [10] followed by a one-C-atom homologation [11] with Ph<sub>3</sub>(Me)PI (60% overall yield after 2 steps). Treatment of the ethenyloxirane alcohol **13** with Sc(OTf)<sub>3</sub> in THF/H<sub>2</sub>O 10:1 (0.25M) cleanly afforded olefinic diol **14** in 70% yield [12]. Protection of **14** with 2,2-dimethoxypropane and camphorsulfonic acid (CSA) in CH<sub>2</sub>Cl<sub>2</sub> at 0° gave ethenyl-1,3-dioxol **15** in 90% yield. Removal of the 'BuPh<sub>2</sub>Si group with Bu<sub>4</sub>NF in THF led to the required olefinic alcohol **5** in 88% yield [4] (Scheme 2).



*a*) BuLi, BF<sub>3</sub>·Et<sub>2</sub>O,THF,  $-78^{\circ}$ , 2 h; 81%. *b*) LiAlH<sub>4</sub>, THF, 0° to 80°, 2 h; 78%. *c*) 1. Pivalolyl chloride, *N*,*N*-dimethylpyridin-4-amine (DMAP),CH<sub>2</sub>Cl<sub>2</sub>, 0°, 2 h; 81%; 2. 'BuPh<sub>2</sub>SiCl, 1*H*-imidazole, CH<sub>2</sub>Cl<sub>2</sub>, r.t.; 91%; 3. K<sub>2</sub>CO<sub>3</sub>, MeOH, r.t., 10 h; 88%. *d*) (-)-Diisopropyl tartrate ((-)-DIPT), Ti('PrO)<sub>4</sub>, 'BuOOH, CH<sub>2</sub>Cl<sub>2</sub>, 4-Å molecular sieves,  $-20^{\circ}$ ; 90%. *e*) 1. (COCl)<sub>2</sub>, DMSO, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>,  $-78^{\circ}$ , 1 h; 2. Ph<sub>3</sub>(Me)PI, sodium hexamethyldisilazanide (NaHMDS), 0°, 1 h; 80%. *f*) Sc(OTf)<sub>3</sub>, THF/H<sub>2</sub>O 10:1, r.t., 2.5 h; 70%. *g*) 2,2-dimethoxypropane, CSA, CH<sub>2</sub>Cl<sub>2</sub>, 0°, 30 min; 90%. *h*) Bu<sub>4</sub>NF, THF, r.t., 2 h; 88%.



The synthesis of oxiranecarboxylic acids **3** and **4** started from the known (2*Z*)-but-2ene-1,4-diol (**6**) (*Scheme 3*). Thus, selective monoprotection of the OH group with 'BuPh<sub>2</sub>SiCl in CH<sub>2</sub>Cl<sub>2</sub> at room temperature gave the mono 'BuPh<sub>2</sub>Si ether in 86% yield, which on further *Sharpless* epoxidation [14] with (+)- and (-)-diisopropyl tartrate ((+)- and (-)-DIPT) gave enantiomeric oxirane alcohols **16** and **17** in 90% yield, respectively. *Swern* oxidation of primary alcohols **16** and **17** gave the corresponding aldehydes, which on further one-C-atom homologation furnished ethenyloxiranes **18** and **19** in good yield (60% overall yield after 2 steps). Deprotection of the 'BuPh<sub>2</sub>Si ether was achieved by treatment with Bu<sub>4</sub>NF in THF to give **20** and **21** [15], which on further oxidation [16] with 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) and [bis-(acetoxy)iodo]benzene (BAIB) gave the required 3-ethenyloxirane-2-carboxyclic acids **3** and **4**, respectively, in 84% yield (overall yield for 2 steps).



*a*) 1. (COCl)<sub>2</sub>, DMSO, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, -78°, 1 h; 2. Ph<sub>3</sub>(Me)PI, NaHMDS, 0°, 1 h; 80%. *b*) Bu<sub>4</sub>NF, THF, r.t., 2 h; 88%. *c*) TEMPO, BAIB, MeCN/H<sub>2</sub>O 1:1; 78%.

The esterification of **3** and **4** with olefinic alcohol **5** under *Yamaguchi* reaction conditions [17] (2,4,6-trichlorobenzoyl chloride) gave compounds **22** and **23** in 80% yield (*Scheme 4*). The RCM reaction [18] of bis-olefins **22** and **23** with *Grubbs* second-generation catalyst (**B**; 10 mol-%) afforded the penultimate compounds **24** and **25** [4], respectively, in 65% yield, which after deprotection of the acetonide with CF<sub>3</sub>COOH gave target molecules **1** and **2** in good yield (70%). The prepared synthetic multiplolide A (**1**) and its diastereoisomer **2** were identical (IR, <sup>1</sup>H- and <sup>13</sup>C-NMR, and MS) with the natural product and its diastereoisomer and also had optical rotations ( $[\alpha]_D^{25} = +25.8$  (c = 0.4, CHCl<sub>3</sub>) for **1** and  $[\alpha]_D^{25} = -12.1$  (c = 0.59, CHCl<sub>3</sub>) for **1** and  $[\alpha]_D^{25} = -11.8$  (c = 0.5, CHCl<sub>3</sub>) for **2** [4]).





*a*) 2,4,6-Trichlorobenzoyl chloride, THF, Et<sub>3</sub>N, r.t.,6 h, DMAP, toulene, r.t., 14 h; 80%. *b*) 2nd-Generation *Grubbs* catalyst (**B**), benzene, reflux 2 h; 65%. *c*) CF<sub>3</sub>COOH, CH<sub>2</sub>Cl<sub>2</sub>, r.t., 10 h; 70%.

In summary, a new stereoselective total synthesis of multiplolide A (1) and its diastereoisomer 2 was achieved from inexpensive and commercially available starting materials. The synthesis is highlighted by *Jacobsen* resolution, *Sharpless* epoxidation, *Swern* oxidation, *Yamaguchi* reaction, and RCM reactions as key steps.

B. C. K. R., V. M. B., and P. R. thank CSIR-UGC for the award of a fellowship, and Dr. J. S. Yadav, Director *IICT*, for his support and encouragement.

## **Experimental Part**

General. All reactions were carried out without any special precautions in an atmosphere of air. Chemicals were purchased from *Fluka* and *S. D. Fine Chemicals*. TLC: precoated silica gel plates 60  $F_{254}$  (SiO<sub>2</sub>, 0.2 mm layer; *Merck*). Column chromatography (CC): SiO<sub>2</sub> 60–120 mesh (*Merck*) <sup>1</sup>H-NMR Spectra: *Varian-200* or *Bruker-300* spectrometer; in CDCl<sub>3</sub>;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, *J* in Hz. MS: *VG Autospec*; in *m/z*.

*Ethyl* (5R)-5-*Hydroxyhex-2-ynoate* (10) [7]. A soln. of 9 (6.3 g, 64.2 mmol) in dry THF (100 ml) was stirred at  $-78^{\circ}$ , then 1.6M BuLi in hexane (40.0 ml, 64.2 mmol) was added, and the mixture was stirred for 30 min at  $-78^{\circ}$ . BF<sub>3</sub> · Et<sub>2</sub>O (8.2 ml, 64.2 mmol) was added followed by a soln. of 8 (2.5 g, 43.0 mmol) in dry THF (20 ml) and stirred at  $-78^{\circ}$  for 2 h. The reaction was quenched by sat. aq. NH<sub>4</sub>Cl soln. and extracted with Et<sub>2</sub>O. The org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated and the residue purified by CC (SiO<sub>2</sub>, 10% AcOEt/hexane): 10 (8.11 g, 81%). [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -9.85 (c = 3.05, CHCl<sub>3</sub>). IR(KBr): 3457, 2954, 2858, 1738, 1254, 1118. <sup>1</sup>H-NMR (300 MHz): 1.06 - 1.22 (m, 6 H); 2.30 - 2.41 (m, 2 H); 3.82 - 3.96 (m, 1 H); 3.99 - 4.14 (m, 2 H). <sup>13</sup>C-NMR (75 MHz): 13.4; 21.9; 28.3; 61.5; 65.0; 74.1; 86.2; 153.4. ESI-MS: 156 ( $M^+$ ). ESI-HR-MS: 156.1818 (C<sub>8</sub>H<sub>12</sub>O<sup>‡</sup>; calc. 156.1814).

(2E,5R)-*Hex-2-ene-I,5-diol* (11) [8]. To a stirred soln. of LiAlH<sub>4</sub> (5.4 g, 143 mmol) in dry THF (130 ml) at 0°, 10 (10.14 gm, 65 mmol) was added dropwise in THF (130 ml) for 10 min. Then, the temp. was increased to r.t. and then to reflux for 2 h. The reaction was quenched by ice and sat. aq. Na<sub>2</sub>SO<sub>4</sub> soln. the mixture and stirred for 1 h at r.t. The mixture was filtered through *Celite*, the *Celite* washed with MeOH, the combined org. layer concentrated, and the residue purified by CC (SiO<sub>2</sub>, 70% AcOEt/ hexane): 11 (5.88 g, 78%).  $[a]_{25}^{25} = -11.8 (c = 1.6, CHCl_3)$ . IR (KBr): 3417, 2925, 1646, 1545, 1235. <sup>1</sup>H-NMR (300 MHz): 1.19 (*d*, *J* = 6.04, 3 H); 2.00–2.30 (*m*, 2 H); 3.80–3.84 (*m*, 1 H); 4.10 (*d*, *J* = 3.77,

2 H); 5.68–5.70 (m, 2 H). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 25.2; 44.2; 66.2; 70.3; 128.7; 129.3. ESI-MS: 139 ( $[M+Na]^+$ ). ESI-HR-MS: 139.1492 ( $C_6H_{12}O_2Na^+$ ; calc. 139.1498).

(2E,5R)-5-{[(1,1-Dimethylethyl)diphenylsilyl]oxy/hex-2-en-1-ol (**12**) [8]. To a stirred soln. of **11** (5.3 g, 45.68 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (182 ml), Et<sub>3</sub>N (13.88 ml, 100.5 mmol), DMAP (cat.), and pivaloyl chloride (5.3 ml, 45.68 mmol) were sequentially added at 0° and stirred at r.t. for 1 h. The mixture was diluted with H<sub>2</sub>O (30 ml) and extracted with AcOEt ( $4 \times 25$  ml). The combined org. layer was washed with brine (20 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated and the residue purified by CC (SiO<sub>2</sub> 20% AcOEt/ hexane): primary-alcohol-protected pivaloyl compound (7.4 g, 81%). IR (KBr): 3404, 3067, 2957, 2929, 2858, 1692, 1604, 1258. <sup>1</sup>H-NMR (300 MHz): 1.18 (*d*, *J* = 6.04, 3 H); 1.17 (*s*, 9 H); 2.01–2.25 (*m*, 2 H); 3.78 (*sext.*, *J* = 6.04, 1 H); 4.50 (*d*, *J* = 6.04, 2 H); 5.53–5.80 (*m*, 2 H). <sup>13</sup>C-NMR (75 MHz): 22.9; 27.3; 38.7; 42.2; 64.6; 66.9; 127.6; 131.3; 177.8. ESI-MS: 223 ([*M*+Na]<sup>+</sup>).ESI-HR-MS: 223.2678 (C<sub>11</sub>H<sub>20</sub>O<sub>3</sub>-Na<sup>+</sup>; calc. 223.2677).

To a stirred soln. of this pivaloyl compound (5.6 g, 28 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (112 ml), 1*H*-imidazole (4.0 gm, 61.6 mmol) and 'BuPh<sub>2</sub>SiCl (8.46 g, 30.8 mmol) were subsequently added at 0° and stirred at r.t. for 30 min. The mixture was diluted with H<sub>2</sub>O and extracted with AcOEt (4 × 20 ml). The combined org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated and the residue purified by CC (SiO<sub>2</sub>, AcOEt/hexane): secondary-alcohol-protected 'BuPh<sub>2</sub>Si compound (11.16 g, 91%). Liquid. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +20.1 (c = 2.0, CHCl<sub>3</sub>). IR (KBr): 3069, 2928, 2857, 1679, 1222, 1102. <sup>1</sup>H-NMR (300 MHz): 1.04 (s, 9 H); 1.18 (s, 9 H); 1.27 (d, J = 9.82, 3 H); 2.15 – 2.22 (m, 2 H); 3.80 – 3.97 (m, 1 H); 4.42 (d, J = 5.85, 2 H); 5.40 – 5.53 (m, 1 H); 5.59 – 5.72 (m, 1 H); 7.28 – 7.42 (m, 6 H); 7.60 – 7.67 (m, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.2; 22.9; 27.0; 27.1; 38.8; 42.3; 64.8; 69.0; 126.4; 127.4; 127.5; 129.5; 131.5; 135.8; 175.4. ESI-MS: 438 ( $M^+$ ). ESI-HR-MS: 438.6822 (C<sub>27</sub>H<sub>38</sub>O<sub>3</sub>Si<sup>+</sup>; calc. 438.6824).

To a soln. of the above 'BuPh<sub>2</sub>Si compound (8.7 g, 20 mmol) in MeOH (100 ml) was added K<sub>2</sub>CO<sub>3</sub> (3.6 g, 26 mmol) and stirred at r.t. for 10 h. The mixture was then passed through *Celite* and the MeOH evaporated. The residue was extracted with AcOEt ( $3 \times 10$  ml), the extract washed with brine (20 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue purified by CC (SiO<sub>2</sub>, 5% AcOEt/hexane): **12** (6.2 g, 88%). Colorless liquid. [a]<sub>25</sub><sup>2</sup> = +42.7 (c = 1.4, CHCl<sub>3</sub>). IR (KBr): 3463, 3047, 1589, 1470, 1427, 1107. <sup>1</sup>H-NMR (300 MHz):1.08 (d, J = 6.04, 3 H); 1.10 (s, 9 H); 2.11 – 2.23 (m, 2 H); 3.82 – 3.92 (m, 1 H); 3.98 (d, J = 3.58, 2 H); 5.52 – 5.57 (m, 2 H); 7.31 – 7.45 (m, 6 H); 7.62 – 7.70 (m, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.2; 23.1; 27.0; 42.2; 63.6; 69.2; 127.4; 129.2; 129.5; 131.3; 134.4; 135.9. ESI-MS: 377 ([M + Na]<sup>+</sup>). ESI-HR-MS: 377.5547 (C<sub>2</sub><sub>2</sub>H<sub>30</sub>O<sub>2</sub>Na<sup>+</sup>Si; calc. 377.5542).

(2R,3R)-3-f(2R)-2-f[(1,1-Dimethylethyl)diphenylsilyl]oxy|propyl]oxirane-2-methanol (=2,3-Anhydro-4,6-dideoxy-5-O-[(1,1-dimethylethyl)diphenylsilyl]-D-arabino-hexitol; 7). To a stirred suspension of activated 4-Å molecular sieves (1.0 g) in CH<sub>2</sub>Cl<sub>2</sub> (80 ml) was added (-)-D-DIPT (0.338 ml, 1.3 mmol) and Ti( $^{1}$ PrO)<sub>4</sub> (0.316 ml, 0.356 mmol) with stirring, and the resulting mixture was stirred for 30 min at -20°. Then 12 (4.0 g, 11.29 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (42 ml) was added dropwise, and the resulting mixture was stirred for another 30 min at  $-20^{\circ}$ . 'BuOOH (6.8 ml, 3.0M in toluene, 22.58 mmol) was then added and the resulting mixture stirred at  $-20^{\circ}$  for 8 h. After warming to  $0^{\circ}$ , the mixture was quenched with H<sub>2</sub>O (1 ml) and stirred for 2 h at r.t. Aq. NaOH soln. (30%, sat. with NaCl) was then added and the mixture stirred vigorously for another 30 min at r.t. The mixture was filtered through Celite, the filtrate extracted with  $CH_2Cl_2$  (3 × 10 ml), washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue purified by CC (SiO<sub>2</sub>, AcOEt/hexane 0.5:9.5); 7 (3.75 g, 90%). Colorless viscous liquid.  $[\alpha]_{25}^{25} = +23$  (c = 0.8, CH<sub>2</sub>Cl<sub>2</sub>). IR (KBr): 3068, 2926, 2854, 1690, 1602, 1299, 1178. <sup>1</sup>H-NMR (300 MHz): 1.05 (s, 9 H); 1.14 (d, J = 6.23, 3 H); 1.58 - 1.68 (m, 1 H); 1.72 - 1.81 (m, 1 H); 2.80 - 2.85 (m, 1 H); 3.05 - 3.09 (td, J = 2.33, J =3.11, 1 H); 3.84 (m, 1 H); 4.48 (d, J = 6.23, 2 H); 7.34 - 7.46 (m, 6 H); 7.64 - 7.70 (m, 4 H). <sup>13</sup>C-NMR (75 MHz): 21.7; 26.9; 40.9; 52.9; 58.1; 67.3; 70.4; 127.5; 129.5; 129.6; 135.7. EI-MS: 393 ([*M* + Na]<sup>+</sup>). ESI-HR-MS: 393.5539 (C<sub>22</sub>H<sub>30</sub>O<sub>3</sub>Na<sup>+</sup>Si; calc. 393.553).

 $(2R,3R)-2-{[2R)-2-{[1,1-Dimethylethyl]diphenylsilyl]oxy}propyl}-3-ethenyloxirane (13).$  To a soln. of oxalyl chloride (0.82 ml, 7.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 ml) at  $-78^{\circ}$  was added DMSO (1.13 ml, 16.0 mmol) within 20 min. The resulting mixture was stirred for an additional 15 min. Then 7 (1.85 g, 5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 ml) was added dropwise. The mixture was stirred for 30 min, Et<sub>3</sub>N (3.47 ml, 25 mmol) was added dropwise, and the mixture was warmed to r.t. for 30 min. After completion of the reaction, the mixture was quenched with H<sub>2</sub>O (30 ml) and the aq. phase extracted with CH<sub>2</sub>Cl<sub>2</sub>

 $(2 \times 20 \text{ ml})$ . The combined org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated: aldehyde (1.472 g, 80%) as a colorless liquid.

To a soln. of Ph<sub>3</sub>(Me)PI (4.84 g, 12.0 mmol) in dry THF (35 ml) was added 1.6M NaHMDS in hexane (7.5 ml) at 0° and stirred for 2 h at 0°. A soln. of the aldehyde (0.560 g, 4.0 mmol) in THF (15 ml) was added *via* cannula to the mixture at 0° and stirred for 30 min. The reaction was quenched with sat. aq. NH<sub>4</sub>Cl soln., and the mixture extracted with AcOEt ( $3 \times 40$  ml). The combined org. extract was washed with brine (30 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue purified by CC (SiO<sub>2</sub>, 5% AcOEt/hexane): **13** (1.17 g, 80%). Yellow syrup.  $[a]_{25}^{25} = +15$  (c = 0.67, CH<sub>2</sub>Cl<sub>2</sub>). IR (KBr): 3029, 2985, 2851, 1555, 1229, 1056. <sup>1</sup>H-NMR (300 MHz): 1.06 (s, 9 H); 1.15 (d, J = 6.00, 3 H); 1.61–1.83 (m, 2 H); 2.94–3.01 (m, 1 H); 3.02 (d, J = 8.00, 1 H); 4.04–4.11 (*sext.*, J = 6.00, 1 H); 5.22–5.28 (m, 1 H); 5.41–5.47 (d, J = 16.01, 1 H); 5.49–5.59 (m, 1 H); 7.34–7.47 (m, 6 H); 7.64–7.73 (m, 4 H). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 22.3; 26.9; 41.4; 57.3; 58.4; 67.4; 119.2; 127.4; 127.5; 129.5; 129.6; 135.8. ESI-MS: 366 ( $M^+$ ). ESI-HR-MS: 366.5754 (C<sub>23</sub>H<sub>30</sub>O<sub>2</sub>Si<sup>+</sup>; calc. 366.5755).

(3S,4R,6R)-6-{[(1,1-Dimethylethyl)diphenylsilyl]oxy/hept-1-ene-3,4-diol (14). To a stirred soln. of 13 (1.3 g, 3.36 mmol) in THF/H<sub>2</sub>O 10:1 (8 ml) was added Sc(OTf)<sub>3</sub> (0.20 equiv., 310 mg, 0.68 mmol), and the mixture was stirred at r.t. for 2.5 h. The resulting diol was extracted with AcOEt (20 ml), the extract washed sequentially with sat. aq. NH<sub>4</sub>Cl soln. and brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated, and the residue purified by flash chromatography (AcOEt/hexane 2:8): 14 (0.903 g, 70%). Pale yellow syrup.  $[a]_D^{25} = -9.0$  (c = 0.5, CHCl<sub>3</sub>). IR (KBr): 3348, 3070, 2961, 2858, 1589, 1467, 1108, 999. <sup>1</sup>H-NMR (300 MHz): 1.04 (s, 9 H); 1.12 (d, J = 6.0, 3 H); 1.56–1.78 (m, 2 H); 3.84–3.93 (m, 1 H); 4.07–4.20 (m, 2 H); 5.20–5.35 (dd, J = 10.5, 17.3, 2 H); 5.77–5.90 (m, 1 H); 7.35–7.47 (m, 6 H); 7.66–7.77 (m, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.1; 24.0; 26.8; 40.2; 65.8; 70.4; 75.5; 116.9; 127.5; 127.7; 129.7; 135.9; 136.2. ESI-MS: 407 ([M + Na]<sup>+</sup>). ESI-HR-MS: 407.5812 ( $C_{23}H_{32}O_{3}Na^+Si$ ; calc. 407.5805).

 $(4R,5S)-4-\{(2R)-2-\{(1,1-Dimethylethyl)diphenylsily]oxy/propyl}-5-ethenyl-2,2-dimethyl-1,3-dioxo$ lane (15). To a soln. of 14 (768 mg, 2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 ml) was added CSA (cat.) and 2,2dimethoxypropane (0.96 ml, 6 mmol) at 0°, and the mixture was stirred for 15–20 min. The reaction wasquenched with Et<sub>3</sub>N (1 or 2 drops), the mixture concentrated, and the residue purified by CC (SiO<sub>2</sub>, $AcOEt/hexane 0.5 :9.5): 15 (0.804 g, 90%). Pale yellow syrup. <math>[\alpha]_{D}^{25} = -9.8 (c = 0.9, CHCl_3)$ . IR (KBr): 3434, 3081, 2981, 2930, 1642, 1457, 1375, 1217, 1042. <sup>1</sup>H-NMR (300 MHz): 1.05 (*s*, 9 H); 1.13 (*d*, *J* = 6.0, 3 H); 1.25 (*s*, 3 H); 1.28 (*s*, 3 H); 1.68–1.90 (*m*, 2 H); 3.93–3.99 (*m*, 1 H); 4.06–4.32 (*m*, 2 H); 5.03–5.34 (*m*, 2 H); 5.56–5.91 (*m*, 1 H); 7.32–7.44 (*m*, 6 H); 7.64–7.75 (*m*, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.1; 24.0; 26.9; 29.7; 40.1; 70.5; 75.5; 85.3; 107.3; 117.0; 127.5; 127.7; 129.6; 129.8; 135.8; 136.1. ESI-MS: 447 ([*M* + Na]<sup>+</sup>). ESI-HR-MS: 424.2435 (C<sub>26</sub>H<sub>36</sub>O<sub>3</sub>Na<sup>+</sup>Si; calc. 424.2433).

 $(2R,3S)-2-{[[(1,1-Dimethylethyl)diphenylsilyl]oxy]methyl]-3-ethenyloxirane (18). To a soln. of oxalyl chloride (1.3 ml, 15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (70 ml) at <math>-78^{\circ}$  was added DMSO (1.4 ml, 20 mmol) within 20 min. The mixture was stirred for an additional 15 min. Then 16 (3.42 g, 10 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 ml) was added dropwise. After 30 min stirring, Et<sub>3</sub>N (7 ml, 50 mmol) was added dropwise. The mixture was allowed to warm to r.t. and stirred for 30 min. After completion of the reaction, the mixture was quenched with H<sub>2</sub>O (30 ml) and the aq. phase extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 30 ml). The combined org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated: aldehyde (3.06 g, 90%). Colorless liquid.

To a soln. of Ph<sub>3</sub>(Me)PI (14.9 g, 54.0 mmol) in dry THF (65 ml) was added a 1.6M NaHMDS in hexane (36 ml) at 0° and stirred for 2 h at 0°. A soln. of the aldehyde (3.06 g, 9.0 mmol) in THF (35 ml) was added *via* cannula at 0° and stirred for 30 min. The reaction was quenched with sat. aq. NH<sub>4</sub>Cl soln. and the mixture extracted with AcOEt ( $3 \times 40$  ml). The combined org. layer was washed with brine (30 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated and the residue purified by CC (SiO<sub>2</sub>, 10% AcOEt/hexane): **18** (2.43 g, 80%). Yellow syrup.  $[a]_{25}^{25} = +5.9$  (c = 1.2, CHCl<sub>3</sub>). IR (KBr): 3064, 2962, 2931, 1469, 1259, 1103. <sup>1</sup>H-NMR (300 MHz): 1.06 (s, 9 H); 3.32 (q, J = 5.0, 1 H); 3.42 – 3.45 (m, 1 H); 3.76 (d, J = 5.0, 2 H); 5.20 (d, J = 10.0, 1 H); 5.40 (d, J = 18.0, 1 H); 5.55 – 5.61 (m, 1 H); 7.45 – 7.60 (m, 6 H); 7.75 – 7.80 (m, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.0; 26.7; 56.4; 59.2; 65.9; 119.4; 129.4; 130.9; 134.6; 134.9. ESI-MS: 338 ( $M^+$ ). ESI-HR-MS: 338.1700 (C<sub>21</sub>H<sub>26</sub>O<sub>2</sub>Si<sup>+</sup>; calc. 338.1702).

(2S,3R)-2-{{[(tert-Butyl)diphenylsilyl]oxy}methyl-3-ethenyloxirane (19). As described for 18: 19. Liquid.  $[\alpha]_D^{25} = -2.3 (c = 2.5, CHCl_3)$ . IR (KBr): 3064, 2992, 2931, 1457, 1259, 1105. <sup>1</sup>H-NMR (200 MHz): 1.07 (*s*, 9 H); 3.28 (*dd*, J = 4.5, 5.2, 1 H); 3.38–3.43 (*m*, 1 H); 3.75 (*d*, J = 5.2, 2 H); 5.23 (*dd*, J = 1.5, 8.3, 1 H); 5.37 (*dd*, J = 1.5, 15.8, 1 H); 5.47–5.60 (*m*, 1 H); 7.32–7.46 (*m*, 6 H); 7.63–7.71 (*m*, 4 H). <sup>13</sup>C-NMR (75 MHz): 19.1; 26.8; 56.4; 59.0; 65.9; 119.4; 129.4; 130.9; 134.5; 134.9. ESI-MS: 338 (*M*<sup>+</sup>). ESI-HR-MS: 338.1696 (C<sub>21</sub>H<sub>26</sub>O<sub>2</sub>Si<sup>+</sup>; calc. 338.1702).

(2R,3S)-3-*Ethenyloxirane-2-methanol* (20). To 18 (2.028 g, 6 mmol) in dry THF (20 ml) was added 1M Bu<sub>4</sub>NF in THF (3.48 ml, 12 mmol), dropwise at 0°, and the mixture was stirred at r.t. for 30 min. H<sub>2</sub>O (2 ml) was added and the mixture extracted with AcOEt (2 × 20 ml). The org. layer was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated and the residue purified by CC (SiO<sub>2</sub>, AcOEt/hexane 0.5 :9.5): **20** (528 mg, 88%). Liquid.  $[a]_{25}^{25} = +8.0$  (c = 1.0, CHCl<sub>3</sub>). IR (KBr): 3433, 3076, 2986, 2871, 1639, 1453, 1379, 1216, 1056, 925, 758. <sup>1</sup>H-NMR (200 MHz): 1.27 (s, 6 H); 2.20–2.23 (m, 2 H); 3.73–3.78 (m, 1 H); 3.95–3.99 (m, 2 H); 5.05–5.08 (m, 2 H); 5.82–5.86 (m, 1 H). <sup>13</sup>C-NMR (75 MHz): 57.1; 58.1; 60.7; 121.1; 134.5. ESI-MS: 100 ( $M^+$ ). ESI-HR-MS: 100.1170 ( $C_5H_8O_2^+$ ; calc. 100.1173).

(2S,3R)-3-*Ethenyloxirane-2-methanol* (21). As described for 20: 21. Liquid.  $[\alpha]_{25}^{25} = -10.0 \ (c = 0.9, CHCl_3)$ . IR (KBr): 3427, 3011, 1619, 1276, 1041. <sup>1</sup>H-NMR (200 MHz): 1.27 (*s*, 6 H); 2.20–2.22 (*m*, 2 H); 3.73–3.77 (*m*, 1 H); 3.95–3.97 (*m*, 2 H); 5.05–5.07 (*m*, 2 H); 5.82–5.88 (*m*, 1 H). <sup>13</sup>C-NMR (75 MHz): 55.4; 56.8; 59.4; 122.6; 133.4. ESI-MS: 100 (*M*<sup>+</sup>). ESI-HR-MS: 100.1171 ( $C_5H_8O_2^+$ ; calc. 100.1173).

(2S,3S)-3-Ethenyloxirane-2-carboxylic Acid (3). To a vigorously stirred soln. of **20** (400 mg, 4 mmol) in MeCN (4 ml) and H<sub>2</sub>O (4 ml) was added TEMPO (0.150 g, 0.8 mmol) and BAIB (3.41 g, 8.8 mmol). Stirring was continued until complete conversion of **20** to **3** (TLC monitoring). The reaction was quenched by sat. aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> soln. (5 ml), the mixture then extracted with AcOEt (2 × 10 ml), the combined org. layer dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated, and the residue purified by CC (SiO<sub>2</sub>, AcOEt/ hexane 3 :7): pure **3** (0.358 g, 78%). Colorless liquid.  $[a]_{25}^{25} = +15.0$  (c = 1.0, CHCl<sub>3</sub>). IR (KBr): 3422, 3006, 1724, 1618, 1570, 1256, 1099. <sup>1</sup>H-NMR (300 MHz): 3.65 (dd, J = 4.0, 5.0, 1 H); 3.72 (d, J = 5.0, 1 H); 5.47 (d, J = 10.0, 1 H); 5.67 (d, J = 18.0, 1 H); 5.80–5.89 (m, 1 H). <sup>13</sup>C-NMR (75 MHz): 56.5; 58.2; 116.3; 136.1; 174.4. EI-MS: 115 ( $[M + 1]^+$ ). ESI-HR-MS: 114.0318 ( $C_3H_6O_3^+$ ; calc. 114.0316).

(2R,3R)-3-*Ethenyloxirane-2-carboxylic Acid* (4). As described for 3: 4. Liquid.  $[a]_{D}^{25} = -12.1$  (c = 0.8, CHCl<sub>3</sub>). IR (KBr): 3429, 3016, 1745, 1620, 1496, 1255, 1079. <sup>1</sup>H-NMR (300 MHz): 3.52 (dd, J = 2.2, 4.5, 1 H); 3.72–3.75 (m, 1 H); 5.37 (d, J = 10.5, 1 H); 5.52 (d, J = 17.3, 1 H); 5.75–5.78 (m, 1 H). <sup>13</sup>C-NMR (75 MHz): 56.6; 58.6; 116.4; 135.6; 173.4. EI-MS: 115 ( $[M+1]^+$ ). ESI-HR-MS: 114.0321 ( $C_3H_6O_4^+$ ; calc. 114.0316).

(2R)-2-[(4R,5S)-5-Ethenyl-2,2-dimethyl-1,3-dioxolan-4-yl]-1-methylethyl (2S,3S)-3-Ethenyloxirane-2-carboxylate (22). To a stirred soln. of **3** (0.114 g, 1 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (10 ml) were added Et<sub>3</sub>N (0.40 g, 2 mmol) and a soln. of 2,4,6-trichlorobenzoyl chloride (0.55 g, 1.5 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (10 ml) and stirred at 0° for 20 min. A soln. of **5** (0.204 g, 1.1 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and DMAP (cat.) were added and stirred for 6 h at r.t. After completion of the reaction (TLC monitoring), the solvent was evaporated and the residue purified by CC (SiO<sub>2</sub> (60–120 mesh) 10% AcOEt/hexane): **22** (0.226 g, 80%). Colorless liquid. [ $\alpha$ ]<sub>25</sub><sup>25</sup> = +8.9 (c = 0.6, CHCl<sub>3</sub>). IR (KBr): 3030, 1714, 1616. <sup>1</sup>H-NMR (300 MHz): 1.24 (d, J = 5.9, 3 H); 1.34 (s, 6 H); 1.83–1.87 (m, 2 H); 3.67–3.69 (m, 1 H); 4.10–4.14 (m, 1 H); 4.20–4.22 (m, 1 H); 4.50 (t, J = 6.9, 1 H); 5.05–5.09 (m, 1 H); 5.20–5.36 (m, 4 H); 5.72–5.83 (m, 2 H). <sup>13</sup>C-NMR (75 MHz): 21.9; 27.0; 35.6; 56.7; 66.1; 69.9; 85.4; 113.4; 117.0; 118.1; 135.6; 139.2; 172.7. EI-MS: 283 ([M + 1]<sup>+</sup>). ESI-HR-MS: 282.3364 (C<sub>15</sub>H<sub>22</sub>O<sub>5</sub><sup>+</sup>; calc. 282.3366).

 $\begin{array}{l} (1\mathrm{R})\text{-}2\text{-}[(4\mathrm{R},5\mathrm{S})\text{-}5\text{-}Ethenyl\text{-}2\text{,}2\text{-}dimethyl\text{-}1\text{,}3\text{-}dioxolan\text{-}4\text{-}yl]\text{-}1\text{-}methylethyl} 3\text{-}(2\mathrm{R},3\mathrm{R})\text{-}3\text{-}Ethenyloxirane2\text{-}carboxylate} (\mathbf{23}). As described for <math>\mathbf{22}$ :  $\mathbf{23}$ . Liquid.  $[a]_{25}^{25} = -2.1 \ (c = 0.49, \mathrm{CHCl}_3)$ . IR (KBr): 3016, 1724, 1612, 1489, 1058. <sup>1</sup>H-NMR (300 MHz): 1.27 (d, J = 6.1, 3 H); 1.33 (s, 6 H); 1.75 - 1.89 (m, 2 H); 3.45 - 3.47 (m, 1 H); 4.10 - 4.12 (m, 1 H); 4.19 - 4.22 (m, 1 H); 4.53 (t, J = 5.2, 1 H); 5.01 - 5.02 (m, 1 H); 5.23 - 5.36 (m, 4 H); 5.68 - 5.80 (m, 2 H). <sup>13</sup>C-NMR (75 MHz): 21.7; 26.9; 35.3; 56.8; 66.6; 69.8; 85.2; 113.1; 116.8; 118.0; 135.5; 139.1; 172.4. EI-MS: 283 ( $[M+1]^+$ ). ESI-HR-MS: 282.3360 ( $C_{15}H_{22}O_{5}^+$ ; calc. 282.3366).

(1a\$,4R,5aR,8a\$,9E,10a\$)-1a,4,5,5a,8a,10a-Hexahydro-4,7,7-trimethyl-2H-[1,3]dioxolo[4,5-g]oxireno[c]oxecin-2-one (=(4E)-2,3-Anhydro-4,5,8,10-tetradeoxy-6,7-O-(1-methylethylidene)-D-glycero-Dmanno-dec-4-enonic Acid 9-Lactone; 24). To a soln. of 22 (0.056 g, 0.2 mmol) in freshly distilled degassed anh. benzene (0.5 ml) was added Grubbs second generation catalyst (**B**; 0.017 mg, 0.02 mmol) and stirred at 25° for 2 h under Ar until complete consumption of the starting material (TLC monitoring). The solvent was evaporated and the brown residue purified by CC (SiO<sub>2</sub>, 10% AcOEt/ hexane): **24** (33 mg, 65%). Colorless oil.  $[\alpha]_{D}^{25} = +14.6$  (c = 0.6, CHCl<sub>3</sub>). IR (KBr): 3025, 2992, 1757, 1605, 1222, 1128. <sup>1</sup>H-NMR (300 MHz): 1.34 (d, J = 6.0, 3 H); 1.47–1.49 (m, 6 H); 1.51–1.68 (m, 2 H); 3.33 (d, J = 5.2, 1 H); 3.81–3.97 (m, 2 H); 4.19–4.21 (m, 1 H); 4.61–4.67 (m, 1 H); 5.77 (dd, J = 9.8, 15.8, 1 H); 5.82 (dd, J = 6.7, 15.8, 1 H). <sup>13</sup>C-NMR (75 MHz): 21.6; 26.6; 34.1; 56.9; 57.1; 67.8; 67.9; 85.9; 112.6; 126.6; 129.5; 171.4. ESI-MS: 254 ( $M^+$ ). ESI-HR-MS: 254.2825 ( $C_{13}H_{18}O_{5}^+$ ; calc. 254.2829).

(1aR,4R,5aR,8aS,9E,10aR)-1a,4,5,5a,8a,10a-Hexahydro-4,7,7-trimethyl-2H-[1,3]dioxolo[4,5-g]oxir-eno[c]oxecin-2-one (=(4E)-2,3-Anhydro-4,5,8,10-tetradeoxy-6,7-O-(1-methylethylidene)-D-glycero-D-al-lo-dec-4-enonic Acid 9-Lactone; **25**). As described for **24**: **25**. Oil. IR (KBr): 3070, 2999, 1734, 1615, 1479, 1254, 1110, 1025.  $[a]_{D}^{25} = -9.3$  (c = 0.4, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz): 1.32 (d, J = 6.9, 3 H); 1.40–1.43 (m, 6 H); 1.58–1.61 (m, 2 H); 3.41 (d, J = 5.7, 1 H); 3.67–3.89 (m, 2 H); 4.21–4.24 (m, 1 H); 4.47–4.49 (m, 1 H); 5.72 (dd, J = 8.9; 16.1, 1 H); 5.82 (dd, J = 6.6, 16.1, 1 H). <sup>13</sup>C-NMR (75 MHz): 21.0; 26.2; 33.8; 56.8; 57.0; 67.9; 67.6; 85.4; 112.1; 126.0; 129.25; 170.9. ESI-MS: 254 ( $M^+$ ). ESI-HR-MS: 254.2822 ( $C_{13}H_{18}O_5^+$ ; calc. 254.2829).

*Multiplolide A* (=(4E)-2,3-*Anhydro-4*,5,8,10-*tetradeoxy*-D-glycero-D-manno-*dec-4-enonic Acid 9-Lactone*; **1**). To a stirred soln. of **24** (0.025 g, 0.1 mmol) in dry  $CH_2Cl_2$  (2 ml),  $CF_3COOH$  (0.10 ml) was added and the mixture stirred for 6 h at 0° (TLC monitoring). The solvent was evaporated and the residue purified by CC (SiO<sub>2</sub>, 10% AcOEt/hexane): **1** (0.014 g, 70%). Colorless liquid.  $[a]_{D}^{25} = +25.8$  (c = 0.4, CHCl<sub>3</sub>). IR (KBr): 3425, 3070, 2932, 2858, 1740, 1590, 1467, 1262, 1108, 1045. <sup>1</sup>H-NMR (300 MHz): 1.34 (d, J = 6.9, 3 H); 1.62–1.91 (m, 2 H); 3.40 (d, J = 4.6, 1 H); 3.88–3.90 (m, 1 H); 3.99–4.01 (m, 1 H); 4.67–4.69 (m, 1 H); 5.07–5.10 (m, 1 H); 5.66 (dd, J = 1.1, 15.8, 1 H); 5.90 (dd, J = 2.2, 15.8, 1 H). <sup>13</sup>C-NMR (75 MHz): 20.5; 35.1; 53.7; 55.1; 67.7; 68.2; 72.1; 117.9; 135.1; 169.1. ESI-MS: 214 ( $M^+$ ). ESI-HR-MS: 214.0837 ( $C_{10}H_{14}O_5^+$ ; calc. 214.0841).

(4E)-2,3-Anhydro-4,5,8,10-tetradeoxy-D-glycero-D-alloo-dec-4-enonic Acid 9-Lactone (2). As described for 1: 2. Liquid.  $[\alpha]_D^{25} = -12.1 \ (c = 0.59, \text{CHCl}_3)$ . IR (KBr): 3425, 3070, 2932, 2858, 1740, 1590, 1467, 1262, 1108, 1045. <sup>1</sup>H-NMR (300 MHz): 1.37 (d, J = 6.7, 3 H); 1.81–1.83 (m, 2 H); 3.30–3.33 (m, 1 H); 3.88–3.89 (m, 1 H); 3.99 (dd, J = 2.1, 6.7, 1 H); 4.51–4.54 (m, 1 H); 5.05–5.08 (m, 1 H); 5.72 (dd, J = 2.1, 16.0, 1 H); 5.89 (dd, J = 1.7, 16.0, 1 H). <sup>13</sup>C-NMR (75 MHz): 21.2; 35.0; 53.3; 54.7; 67.4; 68.1; 72.0; 117.7; 135.3; 170.0. ESI-MS: 214  $(M^+)$ . ESI-HR-MS: 214.0834  $(C_{10}H_{14}O_5^+; \text{ calc. 214.0841})$ .

## REFERENCES

- G. Rousseau, *Tetrahedron* 1995, 51, 2777; L. S. Longo Jr., F. I. Bombonato, H. M. C. Ferraz, *Quim. Nova* 2007, 30, 415; I. Shiina, *Chem. Rev.* 2007, 107, 239; H. M. C. Ferraz, F. I. Bombonato, M. K. Sano, L. S. Longo Jr., *Quim. Nova* 2008, 31, 885.
- [2] G. Dräger, A. Kirschning, R. Thiericke, M. Zerlin, *Nat. Prod. Rep.* **1996**, *13*, 365; M. C. Ferraz, F. I. Bombonato, L. S. Longo Jr., *Synthesis* **2007**, 3261; V. B. Riatto, R. A. Pilli, M. M. Victor, *Tetrahedron* **2008**, *64*, 2279.
- [3] S. Boonphong, P. Kittakoop, M. Isaka, D. Pittayakhajonwut, M. Tantichareon, Y. Thebtaranonth, J. Nat. Prod. 2001, 64, 965.
- [4] C. V. Ramana, T. P. Khaladkar, S. Chatterjee, M. K. Gurjar, J. Org. Chem. 2008, 73, 3817.
- [5] B. C. Reddy, H. M. Meshram, *Tetrahedron Lett.* 2010, *51*, 4020; P. Ramesh, H. M. Meshram, *Tetrahedron Lett.* 2011, *52*, 2443; H. M. Meshram, D. A. Kumar, P. Ramesh, *Helv. Chim. Acta* 2010, *93*, 1422.
- [6] S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307; L. J. Theodore, W. L. Nelson, J. Org. Chem. 1987, 52, 1309.
- [7] N. P. H. Tan, C. D. Donner, Tetrahedron 2009, 65, 4007.
- [8] T.-L. Wang, X. E. Hu, J. M. Cassady, *Tetrahedron Lett.* 1995, 36, 9301; D. K. Reddy, V. Shekhar, P. Prabhakar, D. C. Babu, D. Ramesh, B. Siddhardha, U. S. N. Murthy, Y. Venkateswarlu, *Bioorg. Med. Chem. Lett.* 2011, 21, 997.

- [9] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974; Y. Gao, J. M. Klunder, R. M. Hanson,
  H. Masamune, S. Y. Ko, K. B. Sharpless, J. Am Chem. Soc. 1987, 109, 5765; B. Tirupathi, R. R.
  Gundapaneni, D. K. Mohapatra, Synlett 2011, 2667.
- [10] T. Mukaiyama, H. Arai, I. Shiina, Chem. Lett. 2000, 5, 580.
- [11] E. J. Corey, A. Martaf, B. C. Laguzza, *Tetrahedron Lett.* **1981**, *22*, 3339; R. M. Garbaccio, S. J. Stachel, D. K. Baeschlin, S. J. Danishefsky, J. Am. Chem. Soc. **2001**, *123*, 10903.
- [12] P.-Y. Dakas, R. Jogireddy, G. Valot, S. Barluenga, N. Winssinger, *Chem. Eur. J.* 2009, *15*, 11490.
  [13] R. M. Garbaccio, S. J. Danishefsky, *Org. Lett.* 2000, *2*, 3127.
- [14] T. Katsuki, V. S. Martin, Org. React. 1996, 48, 1–300; C. Bonini, R. D. Fabio, Tetrahedron Lett. 1988,
- [14] I. Katsuki, V. S. Martin, Org. React. 1990, 48, 1 500, C. Bolnin, K. D. Paolo, *Tetranearon Lett.* 1990, 29, 815; T. Ayad, Y. Génnison, M. Baltas, Org. Biomol. Chem. 2005, 3, 2626; F. Yakushiji, J. Maddaluno, M. Yoshida, K. Shisshido, *Tetrahedron Lett.* 2009, 50, 1504.
- [15] D. Diez, A. B. Anton, J. Perna, P. Garcia, N. M. Garrido, I. S. Marcos, F. Sanz, P. Basabe, J. G. Urones, *Tetrahedron: Asymmetry* 2010, 21, 786; V. Jäger, D. Schröter, B. Koppenhoefer, *Tetrahedron* 1991, 47, 2195.
- [16] J. B. EPP, T. S. Widlanski, J. Org. Chem. 1999, 64, 293.
- [17] J. Inanga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989; T. Okino, S. Qi, H. Matsuda, M. Murakami, K. Yamaguchi, J. Nat. Prod. 1997, 60, 158.
- [18] D. K. Mohapatra, D. K. Ramesh, M. A. Giardello, M. S. Chorghade, M. K. Gurjar, R. H. Grubbs, *Tetrahedron Lett.* 2007, 48, 2621; T. Mahapatra, T. Das, S. Nanda, *Bull. Chem. Soc. Jpn.* 2011, 84, 511.

Received March 29, 2012